Наращенная сумма. Первоначальная сумма наращение наращенная сумма

где FVA – наращенная сумма ренты;

R – размер члена ренты, т.е. размер очередного платежа;

i – годовая процентная ставка, по которой на платежи начисляются сложные проценты;

n – срок ренты в годах,

s n;i – коэффициент наращения ренты.

Пример. На счет в банке в течении пяти лет в конце каждого года будут вноситься суммы в размере 500 руб., на которые будут начисляться проценты по ставке 30%. Определить сумму процентов, которую банк выплатит владельцу счета.

Решение:

Поскольку период ренты равен одному году, то это годовая рента; проценты начисляются один раз в год; взносы будут в конце периода ренты, постнумерандо, значит это обычная рента; сумма платежа постоянна на протяжении всего срока ренты, что характерно для постоянной ренты; число членов ренты пять, т.е. конечно, следовательно, ограниченная рента; а выплаты носят безусловный характер, таким образом, это верная рента.

Сумма всех взносов с начисленными процентами будет равна:

Можно определить наращенную сумму постоянной ренты, воспользовавшись финансовыми таблицами, содержащими коэффициенты наращения ренты:

FVA = R s 5 ; 30 = 500 9,0431 = 4"521,55 руб.

Сумма взносов в течение 5 лет составит:

P = n R = 5 500 = 2"500 руб.

Следовательно, сумма начисленных процентов будет равна:

I = FVA - P = 4"521,55 - 2"500 = 2"021,55 руб.

Таким образом, доход владельца счета за 5 лет составит 2"021,55 руб.

Для овладения методами финансовой математики важно не столько запоминание формул, сколько общих принципов расчета.

Для определения наращенной суммы на конец рассматриваемого периода последовательно присоединяются промежуточные результаты наращения к очередному платежу.

Рассмотрим поэтапное решение предыдущего примера:

Расчет наращенной величины аннуитета

* Взносы поступают в конце периода.

Таким образом, получается такая же сумма, как и по формуле наращения аннуитета.

Однако рассматриваемая формула используется только при начислении процентов один раз в год, но возможны случаи и неоднократного начисления процентов в течение года, тогда используют следующую формулу:

Отсюда сумма начисленных процентов будет равна:

I = FVA - P = 4"840,76 - 2"500,00 = 2"340,76 руб.

Как видим, переход от годового начисления процентов к ежеквартальному начислению заметно увеличил как наращенную сумму, так и сумму процентов.

Бывают случаи, когда рентные платежи вносятся несколько раз в год равными суммами (срочная рента), а начисление процентов производится только раз в году. Тогда наращенная величина ренты будет определяться по формуле:

На практике большее распространение получил поток постнумерандо, поскольку согласно общим принципам учета принято подводить итоги и оценивать финансовый результат операции или иного действия по окончании очередного отчетного периода. Что же касается поступления денежных средств в счет оплаты, то на практике они чаще всего распределены во времени неравномерно и поэтому для удобства все поступления относят к концу периода, что позволяет использовать формализованные алгоритмы оценки.

В условиях рыночной экономики любое взаимодействие лиц, фирм и предприятий с целью получения прибыли называется сделкой. При кредитных сделках прибыль представляет собой величину дохода от предоставления денежных средств в долг, что на практике реализуется за счет начисления процентов (процентной ставки – i). Проценты зависят от величины предоставляемой суммы, срока ссуды, условий начисления и т. д.

Важнейшее место в финансовых сделках занимает фактор времени (t). С временным фактором связан принцип неравноценности и неэквивалентности вложений. Для того чтобы определить изменения, происходящие с исходной суммой денежных средств (P), необходимо рассчитать величину дохода от предоставления денег в ссуду, вложения их в виде вклада (депозита), инвестированием их в ценные бумаги и т. д.

Процесс увеличения суммы денег в связи с начислением процентов (i) называют наращением, или ростом первоначальной суммы (P). Таким образом, изменение первоначальной стоимости под влиянием двух факторов: процентной ставки и времени называется наращенной стоимостью (S).

Наращенная стоимость может определяться по схеме простых и сложных процентов. Простые проценты используются в случае, когда наращенная сумма определяется по отношению к неизменной базе, то есть начисленные проценты погашаются (выплачиваются) сразу после начисления (таким образом, первоначальная сумма не меняется); в случае, когда исходная сумма (первоначальная) меняется во временном интервале, имеют дело со сложными процентами.

При начислении простых процентов наращенная сумма определяется по формуле


S = P (1 + i t), (1)

где S – наращенная сумма (стоимость), руб.; P – первоначальная сумма (стоимость), руб.; i – процентная ставка, выраженная в коэффициенте; t – период начисления процентов.

S = 10 000 (1+ 0,13 · 1) = 11 300, руб. (сумма погашения кредита);

ΔР = 11 300 – 10 000 = 1 300, руб. (сумма начисленных процентов).

Определить сумму погашения долга при условии ежегодной выплаты процентов, если банком выдана ссуда в сумме 50 000 руб. на 2 года, при ставке – 16 % годовых.

S = 50 000 (1+ 0,16 · 2) = 66 000, руб.

Таким образом, начисление простых процентов осуществляется в случае, когда начисленные проценты не накапливаются на сумму основного долга, а периодически выплачиваются, например, раз в год, полугодие, в квартал, в месяц и т. д., что определяется условиями кредитного договора. Также на практике встречаются случаи, когда расчеты производятся за более короткие периоды, в частности на однодневной основе.

В случае, когда срок ссуды (вклада и т. д.) менее одного года, в расчетах необходимо скорректировать заданную процентную ставку в зависимости от временного интервала. Например, можно представить период начисления процентов (t) в виде отношения , где q – число дней (месяцев, кварталов, полугодий и т. д.) ссуды; k – число дней (месяцев, кварталов, полугодий и т. д.) в году.

Таким образом, формула (1) изменяется и имеет следующий вид:

S = P (1 + i ). (2)

Банк принимает вклады на срочный депозит на срок 3 месяца под 11 % годовых. Рассчитать доход клиента при вложении 100 000 руб. на указанный срок.

S = 100 000 (1+ 0,11 · ) = 102 749,9, руб.;

ΔР = 102 749,9 – 100 000 = 2 749,9, руб.

В зависимости от количества дней в году возможны различные варианты расчетов. В случае, когда за базу измерения времени берут год, условно состоящий из 360 дней (12 месяцев по 30 дней), исчисляют обыкновенные, или коммерческие проценты. Когда за базу берут действительное число дней в году (365 или 366 – в високосном году), говорят о точных процентах.

При определении числа дней пользования ссудой также применяется два подхода: точный и обыкновенный. В первом случае подсчитывается фактическое число дней между двумя датами, во втором – месяц принимается равным 30 дням. Как в первом, так и во втором случае, день выдачи и день погашения считаются за один день. Также существуют случаи, когда в исчислении применяется количество расчетных или рабочих банковских дней, число которых в месяц составляет 24 дня.

Таким образом, выделяют четыре варианта расчета:

1) обыкновенные проценты с точным числом дней ссуды;

2) обыкновенные проценты с приближенным числом дней ссуды;

3) точные проценты с приближенным числом дней ссуды;

4) точные проценты с банковским числом рабочих дней.

При этом необходимо учесть, что на практике день выдачи и день погашения ссуды (депозита) принимают за один день.

Ссуда выдана в размере 20 000 руб. на срок с 10.01.06 до 15.06.06 под 14 % годовых. Определить сумму погашения ссуды.

1. Обыкновенные проценты с точным числом дней ссуды:

156=21+28+31+30+31+15;

S = 20 000 (1+0,14 · ) =21 213,3, руб.

2. Обыкновенные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 205,6, руб.

3. Точные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 189,0, руб.

4. Точные проценты с банковским числом рабочих дней:

S = 20 000 (1+0,14 · ) =21 516,7, руб.

Данные для расчета количества дней в периоде представлены в прил. 1, 2.

Как сказано выше, кроме начисления простых процентов применяется сложное начисление, при котором проценты начисляются несколько раз за период и не выплачиваются, а накапливаются на сумму основного долга. Этот механизм особенно эффективен при среднесрочных и долгосрочных кредитах.

После первого года (периода) наращенная сумма определяется по формуле (1), где i будет являться годовой ставкой сложных процентов. После двух лет (периодов) наращенная сумма S 2 составит:

S 2 = S 1 (1 + it) = P (1 + it) · (1 + it) = P (1 + it) 2 .

Таким образом, при начислении сложных процентов (после n лет (периодов) наращения) наращенная сумма определяется по формуле

S = P (1 + i t) n , (3)

где i – ставка сложных процентов, выраженная в коэффициенте; n – число начислений сложных процентов за весь период.

Коэффициент наращения в данном случае рассчитывается по формуле


Кн = (1 + i t) n , (4)

где Кн – коэффициент наращения первоначальной стоимости, ед.

Вкладчик имеет возможность поместить денежные средства в размере 75 000 руб. на депозит в коммерческий банк на 3 года под 10 % годовых.

Определить сумму начисленных процентов к концу срока вклада, при начислении сложных процентов.

S = 75 000 (1+ 0,1 · 1) 3 = 99 825, руб.

ΔР = 24 825, руб.

Таким образом, коэффициент наращения составит:

Кн = (1+ 0,1 · 1) 3 = 1,331

Следовательно, коэффициент наращения показывает, во сколько раз увеличилась первоначальная сумма при заданных условиях.

Доля расчетов с использованием сложных процентов в финансовой практике достаточно велика. Расчеты по правилу сложных процентов часто называют начисление процентов на проценты, а процедуру присоединения начисленных процентов – их реинвестированием или капитализацией.


Рис. 1. Динамика увеличения денежных средств при начислении простых и сложных процентов

Из-за постоянного роста базы вследствие реинвестирования процентов рост первоначальной суммы денег осуществляется с ускорением, что наглядно представлено на рис. 1.

В финансовой практике обычно проценты начисляются несколько раз в году. Если проценты начисляются и присоединяются чаще (m раз в год), то имеет место m-кратное начисление процентов. В такой ситуации в условиях финансовой сделки не оговаривают ставку за период, поэтому в финансовых договорах фиксируется годовая ставка процентов i, на основе которой исчисляют процентную ставку за период (). При этом годовую ставку называют номинальной, она служит основой для определения той ставки, по которой начисляются проценты в каждом периоде, а фактически применяемую в этом случае ставку (() mn) – эффективной, которая характеризует полный эффект (доход) операции с учетом внутригодовой капитализации.

Наращенная сумма по схеме эффективных сложных процентов определяется по формуле

S = P (1+ ) mn , (5)

где i – годовая номинальная ставка, %; (1+ ) mn – коэффициент наращения эффективной ставки; m – число случаев начисления процентов за год; mn – число случаев начисления процентов за период.

S = 20 000 (1+ ) 4·1 = 22 950, руб.

Следует отметить, что при периоде, равным 1 году, число случаев начисления процентов за год будет соответствовать числу случаев начисления процентов за весь период. Если, период составляет более 1 года, тогда n (см. формулу (3)) – будет соответствовать этому значению.

S = 20 000 (1+ ) 4·3 = 31 279, 1 , руб.

Начисление сложных процентов также применяется не только в случаях исчисления возросшей на проценты суммы задолженности, но и при неоднократном учете ценных бумаг, определении арендной платы при лизинговом обслуживании, определении изменения стоимости денег под влиянием инфляции и т. д.

Как говорилось выше, ставку, которая измеряет относительный доход, полученный в целом за период, называют эффективной. Вычисление эффективной процентной ставки применяется для определения реальной доходности финансовых операций. Эта доходность определяется соответствующей эффективной процентной ставкой.

I эф = (1+ ) mn – 1 . (6)

Кредитная организация начисляет проценты на срочный вклад, исходя из номинальной ставки 10 % годовых. Определить эффективную ставку при ежедневном начислении сложных процентов.

i = (1+ ) 365 – 1 = 0,115156, т. е. 11 %.

Реальный доход вкладчика на 1 руб. вложенных средств составит не 10 коп. (из условия), а 11 коп. Таким образом, эффективная процентная ставка по депозиту выше номинальной.

Банк в конце года выплачивает по вкладам 10% годовых. Какова реальная доходность вкладов при начислении процентов: а) ежеквартально; б) по полугодиям.

а) i = (1+ ) 4 – 1 = 0,1038, т. е. 10,38 %;

б) i = (1+ ) 2 – 1 = 0,1025, т. е. 10,25 %.

Расчет показывает, что разница между ставками незначительна, однако начисление 10 % годовых ежеквартально выгодней для вкладчика.

Расчет эффективной процентной ставки в финансовой практике позволяет субъектам финансовых отношений ориентироваться в предложениях различных банков и выбрать наиболее приемлемый вариант вложения средств.

В кредитных соглашениях иногда предусматривается изменение во времени процентной ставки. Это вызвано изменением контрактных условий, предоставлением льгот, предъявлением штрафных санкций, а также изменением общих условий совершаемых сделок, в частности, изменение процентной ставки во времени (как правило, в сторону увеличения) связано с предотвращением банковских рисков, возможных в результате изменения экономической ситуации в стране, роста цен, обесценения национальной валюты и т. д.

Расчет наращенной суммы при изменении процентной ставки во времени может осуществляться как начислением простых процентов, так и сложных. Схема начисления процентов указывается в финансовом соглашении и зависит от срока, суммы и условий операции.

Пусть процентная ставка меняется по годам. Первые n 1 лет она будет равна i 1 , n 2 – i 2 и т. д. При начислении на первоначальную сумму простых процентов необходимо сложить процентные ставки i 1 , i 2 , i n , а при сложных – найти их произведение.

При начислении простых процентов применяется формула

S = P (1+i 1 t 1 + i 2 t 2 + i 3 t 3 + i n t n) , (7)

где i n – ставка простых процентов; t n – продолжительность периода начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты выплачиваются ежегодно.

S = 10 000 (1+0,10 · 1 +0,105 · 1 + 0,11 · 1)=13 150, руб.;

ΔР = 3 150, руб.

При начислении сложных процентов применяется формула

S = P(1+i 1 t 1)·(1+ i 2 t 2)·(1+ i 3 t 3)·(1+ i n t n) (8)

где i n – ставка сложных процентов; t n – продолжительность периода ее начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты капитализируются.

S = 10 000 (1+0,10 · 1)·(1 +0,105 · 1)·(1 + 0,11 · 1)= 13 492, 05, руб.


Приведенные примеры подтверждают тот факт, что начисление простых процентов связано с определением наращенной суммы по отношению к неизменной базе, т. е. каждый год (период) проценты начисляются на одну и ту же первоначальную стоимость. Если рассмотреть пример 10, то в этом случае наращенная стоимость составит:

– за первый год: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

ΔР 1 = 1 000, руб.;

– за второй год: S 2 = 10 000 (1+0,105 · 1) = 11 050, руб.;

ΔР 2 = 1 050, руб.;

– за третий год: S 3 = 10 000 (1+0,11 · 1) = 11 100, руб.;

ΔР 3 = 1 100, руб.

Таким образом, сумма процентов за 3 года составит:

ΔР = 1 000+1 050+1 100 = 3 150, руб. (см. пример 10).

В случае начисления сложных процентов, исходная сумма меняется после каждого начисления, так как проценты не выплачиваются, а накапливаются на основную сумму, т. е. происходит начисление процентов на проценты. Рассмотрим пример 11:

– в первом году: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

– во втором году: S 2 = 11000 (1+0,105 · 1) = 12 100, руб.;

– в третьем году: S 3 = 12100 (1+0,11 · 1) = 13 431, руб.

Таким образом, сумма процентов за 3 года составит: i 3 = 3 431, руб. (см. пример 10).

При разработке условий контрактов или их анализе иногда возникает необходимость в решении обратных задач – определение срока операции или уровня процентной ставки.

Формулы для расчета продолжительности ссуды в годах, днях и т. д. можно рассчитать, преобразуя формулы (1) и (5).

Срок ссуды (вклада):

t = · 365 . (9)

Определить на какой срок вкладчику поместить 10 000 руб. на депозит при начислении простых процентов по ставке 10 % годовых, чтобы получить 12 000 руб.

t = () · 365 = 730 дней (2 года).

Клиент имеет возможность вложить в банк 50 000 руб. на полгода. Определить процентную ставку, обеспечивающую доход клиента в сумме 2 000 руб.


t = () = 0,08 = 8 % годовых

Аналогично определяется необходимый срок окончания финансовой операции и ее протяженность, либо размер требуемой процентной ставки при начислении сложных процентов.

Для упрощения расчетов значения коэффициента (множитель) наращения представлены в прил. 3.

Получатели поступлений оценивают свой доход суммарной величиной за полный срок действия платежа, разумеется, с учетом временной неравноценности денег.

Наращенная сумма – сумма всех платежей с начисленными на них процентами к концу срока ренты. Это может быть обобщенная сумма задолженности, итоговый объем инвестиций и т.п.

Логика финансовой операции наращения финансовой ренты

Наращенные отдельные платежи представляют собой члены геометрической прогрессии с первым членом равным R и множителем равным (1 + i ).

Рассмотрим определение наращенной суммы на примере наиболее простого случая, – годовой постоянной обычной ренты:

где FVA – наращенная сумма ренты;

R – размер члена ренты, т.е. размер очередного платежа;

i – годовая процентная ставка, по которой на платежи начисляются сложные проценты;

n – срок ренты в годах,

s n;i – коэффициент наращения ренты.

Пример. На счет в банке в течении пяти лет в конце каждого года будут вноситься суммы в размере 500 руб., на которые будут начисляться проценты по ставке 30%. Определить сумму процентов, которую банк выплатит владельцу счета.

Решение:

Поскольку период ренты равен одному году, то это годовая рента; проценты начисляются один раз в год; взносы будут в конце периода ренты, постнумерандо, значит это обычная рента; сумма платежа постоянна на протяжении всего срока ренты, что характерно для постоянной ренты; число членов ренты пять, т.е. конечно, следовательно, ограниченная рента; а выплаты носят безусловный характер, таким образом, это верная рента.

Сумма всех взносов с начисленными процентами будет равна:

Расчет современной стоимости постоянной годовой ренты ПОСТНУМЕРАНДО при начислении % один раз в год.

Помимо наращенной суммы обобщающей характеристикой потока платежей является современная величина. Современная (текущая) величина потока платежей (капитализированная или приведенная величина) – это сумма платежей, дисконтированных на момент начала ренты по ставке начисляемых сложных процентов. Это важнейшая характеристика финансового анализа, т.к. является основой для измерения эффективности различных финансово-кредитных операций, сравнения условий контрактов и т.п. Данная характеристика показывает, какую сумму следовало бы иметь первоначально, чтобы, разбив ее на равные взносы, на которые начислялись бы установленные проценты в течение всего срока, можно было бы получить указанную наращенную сумму.

Логика финансовой операции определения современной величины потока платежей

В этом случае реализуется схема дисконтирования: все элементы с помощью дисконтных множителей приведены к одному моменту времени, что позволяет их суммировать.

В простейшем случае, для годовой обычной ренты с выплатами в конце каждого года, когда момент оценки совпадает с началом ренты, современная величина финансовой ренты равна:

Дробь в формуле – коэффициент приведения ренты (a n;i ), значения которого табулированы для широкого круга значений, поскольку зависят от ставки процентов (i ) и от числа лет (n ) (Приложение 5).

Пример. Определить по данным примера современную величину ренты.

Решение:

Современная величина ренты составит:

Таким образом, все производимые в будущем платежи оцениваются в настоящий момент в размере 1"217,78 руб.

16. Расчет наращенной суммы постоянной p -срочной ренты ПОСТНУМЕРАНДО при начислении % m раз в год (p = m )

Бывают случаи, когда рентные платежи вносятся несколько раз в год равными суммами (срочная рента), а начисление процентов производится только раз в году. Тогда наращенная величина ренты будет определяться по формуле:

Также нередки случаи, когда рентные платежи вносятся несколько раз в году и начисление процентов также происходит несколько раз в год, но число рентных платежей не равно числу периодов начисления процентов, т.е. p ≠ m . Тогда формула по которой можно определить наращенную величину финансовой ренты примет вид:

На практике большее распространение получил поток постнумерандо, поскольку согласно общим принципам учета принято подводить итоги и оценивать финансовый результат операции или иного действия по окончании очередного отчетного периода. Что же касается поступления денежных средств в счет оплаты, то на практике они чаще всего распределены во времени неравномерно и поэтому для удобства все поступления относят к концу периода, что позволяет использовать формализованные алгоритмы оценки.

Поток пренумерандо имеет значение при анализе различных схем накопления денежных средств для последующего их инвестирования.

Рента пренумерандо отличается от обычной ренты числом периодов начисления процентов. Поэтому наращенная сумма ренты пренумерандо будет больше наращенной суммы обычной ренты в (1 + i ) раз.

Для годовой ренты пренумерандо с начислением процентом один раз в год формула примет вид:

Для годовой ренты пренумерандо с начислением процентов несколько раз в год:

Расчет современной стоимости постоянной p-срочной ренты ПОСТНУМЕРАНДО при начислении % m раз в год (p=m).

Рассмотрим расчет современной величины ренты для различных ее видов:

    годовая рента с начислением процентов несколько раз в год:

    срочная рента при начислении процентов один раз в год:

    срочная рента с неоднократным начислением процентов в течение года, при условии, что число выплат не равно числе начислений, т.е. p ≠ m :

17. Определение размера очередного платежа постоянной финансовой ренты ПОСТНУМЕРАНДО (p = m =1)

Последовательные платежи в виде постоянной обычной годовой ренты определяются основными параметрами:

R – размер платежа;

n – срок ренты в годах;

i – годовая ставка процентов.

Однако при разработке условий финансовой операции могут возникать ситуации, когда заданной величиной является одна из двух обобщающих характеристик и неполный набор параметров ренты. В таких случаях находят недостающий параметр.

При определении члена ренты возможны два варианта, зависящие от того, какая величина является исходной:

а) наращенная сумма . Если сумма долга определена на какой-либо момент в будущем (FVA ), тогда величину последующих взносов в течение n лет при начислении на них процентов по ставке i можно определить по формуле:

Пример. Для покупки автомобиля через 5 лет потребуется 50 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 40%.

Решение:

В данном случае известна наращенная величина постоянной финансовой ренты, поэтому размер ежегодных взносов будет равен:

Таким образом, чтобы накопить на счете необходимую сумму для покупки автомобиля следует в конце каждого года в течении пяти лет откладывать 4"568 руб.

б) современная величина финансовой ренты, тогда, исходя из ставки процента и срока ренты, разовый платеж находится по формуле:

Пример. Сумма 10 тыс. долларов предоставлена в долг на 5 лет под 8% годовых. Определить ежегодную сумму погашения долга.

Решение:

Известна современная величина долга, отсюда:

Таким образом, ежегодно необходимо будет возвращать сумму 2"504,56 руб.

Можно произвести проверку: сумма долга с начисленными на нее процентами к концу пятого года будет составлять:

FV = 10"000 (1 + 0,08) 5 = 14"693,28 руб.

Наращенная сумма для потока платежей размером 2"504,56 руб. составит:

Следовательно, величина члена финансовой ренты определена верно. Незначительное расхождение вызвано округлением расчетов.

Современная величина ренты пренумерандо рассчитывается путем умножения современной величины обычной ренты на соответствующий множитель наращения.

Дисконтирование

Современная стоимость (Возвращаемая сумма)

Процентная ставка

Рис. 6. Логика финансовых операций

Математическое дисконтирование

Математическое дисконтирование представляет собой формальное решение задачи, обратной наращению первоначальной суммы ссуды. Задача в этом случае формулируется так: какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S при условии, что на долг начисляются проценты по ставке i ? Решив уравнение (1) относительно P , находим:

(12)

Установленная таким путем величина P является современной величиной суммы S , которая будет выплачена через n лет. Выражение 1/(1 + n∙i ) называется дисконтным множителем , который показывает современную стоимость одной денежной единицы.

Разность (S P ) можно рассматривать не только как проценты, начисляемые на P , но и как дисконт суммы S . Обозначим последний через D . Дисконт, как скидка с конечной суммы долга необязательно определяется через процентную ставку, он может быть установлен по соглашению сторон и в виде абсолютной величины для всего срока.

Рассмотрим примеры.

Пример 8.

Через год владелец векселя, выданного коммерческим банком, должен получить по нему 220 тыс. руб. Какая сумма была внесена в банк в момент приобретения векселя, если годовая ставка составляет 12%?

Дано: Решение:

S = 220 т.р. Представим задачу графически

n = 1 год

i = 12%; n = 1 г.

S = 120т.р.

дисконтирование

Используя выражение (12) получим:
тыс. руб.

Пример 9.

Ссуда должна быть погашена через год в сумме 200 тыс. руб. Кредитор попросил погасить ссуду через 270 дней после выдачи под 10% годовых. Какую сумму получит кредитор? К = 365 дн.

Дано: Решение:

S = 200 тыс. руб. Изобразим задачу графически:

n = 1г.

n 1 = 270 дн.

i = 10%

n = 365-270

S = 200т.р.

дисконтирование

n 1 = 270

n 0 = 95 дн.

n = 365

Находим количество дней, оставшихся до погашения ссуды:

n 0 = n n 1 = 365 – 270 = 95 (дн.)

Используя выражение (12) находим:

(тыс. руб.)

Банковский или коммерческий учет (учет векселей)

При учете векселя применяется банковский учет. Согласно этому методу проценты за использование ссуды в виде дисконта начисляются на сумму, подлежащую уплате в конце срока. При этом применяется учетная ставка d . (рис. 7)

Р дисконтирование (учет) S

Рис. 7

Дисконтирование с использованием простой учетной ставки

Расчетная формула для вычисления этих процентов выводится на основе следующих рассуждений.

Пусть с 1 руб. берется годовая учетная (дисконтная, авансовая) ставка d , тогда должник получает на руки сумму (1- d ) и по истечении срока должен вернуть 1 руб. То есть, если 1 руб. – это возвращаемая сумма S , то первоначальная сумма будет равна: P = S d (при условии что срок равен одному году), или в нашем случае, P = 1 – d . Если значение S , Р и n – произвольны, то

P = S S n d = S (1 – n d ), (13)

где S∙n∙d – величина дисконта, а n – срок от момента учета до даты погашения векселя. Величина (1 – n∙d ) называется дисконтным множителем при использовании учетной процентной ставки. Учет посредством учетной ставки осуществляется чаще всего при временной базе K = 360 дней, число дней ссуды берется точное (обыкновенные проценты с точным числом дней ссуды).

Для уяснения практического приложения рассмотрим дисконтный вексель. Используя номинал векселя (S ) , учетную ставку (d ) , время, оставшееся до срока погашения (t ) , вычитают дисконт (D ) – скидку с номинала, т.е. разницу между S и Р .

Затем рассчитывают выкупную (фактурную) стоимость векселя до срока погашения

(13а)

Рассмотрим пример:

Пример 10.

Владелец векселя номиналом 100 тыс. руб. и периодом обращения 105 дн., за 15 дн. до наступления срока платежа учитывает его в банке по учетной ставке 20%. Определить сумму, полученную владельцем векселя.

Дано: Решение:

S = 100 тыс. руб. Изобразим задачу графически:

Пер. обращение – 105 дн.

n = 15 дн.

Р - ? S = 100

n = 15 дн.

Используя выражение (13а) получим:

(тыс. руб.)

В отдельных случаях может возникнуть ситуация, когда совмещается начисление процентов по ставке наращения i и дисконтирование по учетной ставке d . В этом случае, полученная при учете сумма определиться как:

P` = P (1 + n i ) (1 – n` d ) (14)

S `

где P ( S ) – номинальная сумма; n – общий срок платежного обязательства; n ` - срок от момента учета до даты погашения платежа; Р` - сумма, полученная при учете обязательства.

Пример 11.

Долговое обязательство, предусматривающее уплату 400 тыс. руб. с начисленными на них 12% годовых, подлежит погашению через 90 дн. Владелец обязательства (кредитор) учел его в банке за 15 дн. до наступления срока по учетной ставке 13,5%. Полученная сумма после учета составила:

Дано: Решение:

S = 400 тыс. руб. В этой задаче номинальная стоимость

n = 90 дн. (возвращаемая сумма) принимается за

n ` = 15 дн. первоначальную: S = P (см. график).

d = 13,5%

P (S ) =400 т.р. S `

i = 12%; n = 90 дн.

d = 13,5%; n ` = 15дн.

дисконтирование

P ` -?

1. Вначале определяем наращенную сумму обязательства S ` , принимая его номинальную стоимость за первоначальную сумму:

(тыс. руб.)

2. Находим полученную после учета сумму:

(тыс. руб.)

3. Используя выражение (14) получаем ту же сумму:

(тыс. руб.)

Необходимость использования простой учетной ставки для расчета наращенной суммы возникает в случае определения номинальной стоимости векселя при выдаче ссуды. В этом случае сумма долга, проставленная в векселе, будет равна

(15)

Величина 1/(1-n d ) в этом случае является множителем наращения при использовании простой учетной ставки.

Пример 12.

Предприниматель обратился в банк за ссудой в размере 200 тыс. руб. на срок 55 дней. Банк согласен выдать указанную сумму при условии начисления процентов по простой учетной ставке, равной 20%. Найти возвращаемую сумму.

Дано: Решение:

Р = 200 тыс. руб. В этой задаче наращение производится

n = 55 дн. по простой учетной ставке.

Р = 200 S - ?

наращение

d = 20; n = 55 дн.

Используя выражение (15) получим:

тыс. руб.

Если бы сумма выдавалась под простую процентную ставку ( i ) , то наращенная сумма была бы равна тыс.руб . , т.е. наращение по учетной ставке идет быстрее и она менее выгодна должнику 206,111 < 206,304 т.е. возвращаемая сумма в первом случае будет больше.

Определение срока ссуды при использовании учетной ставки производится по формулам:


, (16)

, (17)

где n –срок ссуды в годах; t – срок ссуды в днях; k – временная база.

Рассмотрим пример:

Пример 13.

Фирме необходим кредит в 500 тыс. руб. Банк согласен на выдачу кредита при условии, что он будет возвращен в размере 600 тыс. руб. Учетная ставка 21% годовых. На какой срок банк предоставит кредит фирме? К = 365 дней

Дано: Решение:

S = 600 тыс. руб. Графическая иллюстрация задачи

Р = 500 тыс. руб.

Р = 500 т.р. S = 600 т.р.

d = 20%; n - ?

дисконтирование

При решении подобного рода задач проще воспользоваться выражением (17) , тогда срок кредита сразу получится в днях (при использовании выражения (16) срок будет выражен в долях года):

(дн.)

Величина учетной ставки рассчитывается по формулам:

, (18)

. (19)

Пример 14.

Контракт на получение ссуды в 500 тыс. руб. предусматривает возврат долга через 300 дней в сумме 600 тыс. руб. Определим примененную банком учетную ставку. К = 365 дней.

Дано: Решение:

Р = 500 тыс. руб.

S = 600 тыс. руб.

t = 300 дней

Р = 500 т.р. дисконтирование S = 600 т.р.

d = ? t = 300 дн.

По формуле (19) получим:
или
d = 20,27%

При операциях с дисконтными финансовыми инструментами учетная ставка иногда может задаваться неявно: в виде общей относительной доли уменьшения номинала или как отношение дисконтированной суммы к номиналу; тогда d находится как или

(20)

где d ` - процент скидки; t – срок до учета (срок векселя).

Пример 15.

Размер удерживаемых процентов при выдаче полугодовой ссуды составляет 20% суммы ссуды. Определим заложенную учетную ставку процентов (дисконтную ставку). К = 365

Дано: Решение:

d ` = 20%

t = 0,5 г.(180 дн.)

К = 365 дн.

d - ?

Пример 16.

Государственные краткосрочные трехмесячные векселя котируются по курсу 90. Вычислим учетную ставку. К =360.

Дано: Решение:

P / S = 0,9 скидка в нашем случае: 1 – 0,9 = 0,1

d - ? тогда:

Пример 1.2 Пенсионер положил 3000 руб. на срочный пенсионный вклад на полгода под 14% годовых. Какая сумма у него накопится в конце срока, и какой процент он сможет снять? Каков коэффициент наращения?

Решение . Поскольку пенсионер отдал свои деньги банку, то первоначальная сумма отрицательна; m =2, так как начисления - раз в полгода.

FV = -(-3000)(1+0,14/2)=3210 руб.

I= FV- PV=210 руб.

К=1+0,14/2=1,07

По формулам (1.2)-(1.5) можно решить обратную задачу : какую первоначальную сумму PV нужно дать в долг или положить в банк, чтобы по истечении срока получить сумму FV при заданной годовой процентной ставке r:

Пример 1.3 Через 180 дней после подписания договора фирма обязуется уплатить 310 тыс. руб. Кредит выдан под 16% годовых. Какова первоначальная сумма кредита?

Решение . В конце срока фирма должна вернуть деньги, следовательно, будущая сумма - отрицательная величина, а первоначальная - положительная. Из (1.5)

1.3 Сложные проценты

1.3.1 Формула сложных процентов

Схема сложных процентов предполагает их капитализацию , таким образом, базовая сумма, с которой происходят начисления, постоянно растет. Сложные проценты применяются в среднесрочных и долгосрочных финансовых операциях, то есть срок операции составляет несколько периодов начисления процентов.

Пусть Вы положили в банк срочный вклад в сумме PV на k лет под годовую процентную ставку r. Число периодов начисления процентов в году m .Тогда в соответствии с формулой (1.4) к концу первого периода, т.е. после первого начисления процентов, у Вас окажется сумма FV, определяемая соотношением

FV + PV (1+)= 0.

Если Вы не забрали причитающиеся Вам проценты, то к началу нового периода первоначальная сумма составит уже PV(1+r/m), а к концу второго периода на нее снова нарастут проценты и Ваша сумма вклада будет определяться из соотношения

К концу года Ваш вклад будет равен

.

Сумма, накопленная Вами в банке через k лет при годовой ставке r и начислениях процентов m раз в году, составит

(1.6)

Эквивалентное уравнение (1.6) называют формулой сложных процентов .

Из уравнений (1.4) - (1.6) можно определить одну из величин:

FV - будущую сумму;

PV - текущую сумму;

r - номинальную процентную ставку;

t или k - срок сделки в днях или годах,

выразив их через остальные известные величины.

1.3.2 Определение будущей суммы

От продажи родительского дома у Вас оказалось 50 тыс. руб. Вы знаете, что в течение 5 лет Вам эти деньги не понадобятся, и Вы решили открыть счет в банке. Годовая ставка банка 12%. Банк предлагает следующие виды вкладов:

    с ежемесячным начислением процентов;

    с ежеквартальным начислением процентов;

    депозит на 6 месяцев;

    депозит на 12 месяцев.

Какой из вкладов принесет больший доход через 5 лет?

Решение . Воспользуемся формулой (1.6). В нашем примере PV= -50 000, r =0,12, k =5.

В первом случае m =12 и

90834,83 руб.

Во втором - m =4 и

90305,56 руб.

В третьем случае - m =2 и

89542,38 руб.

В последнем варианте - m =1 и

88117,08 руб.

Очевидно, что во всех случаях банк вносит немалую лепту (больше 38 тыс. руб.) в Ваш будущий вклад.

Как видно из примера, чем меньше период начисления процентов при той же годовой процентной ставке, тем выгоднее вклад.